Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes.

Identifieur interne : 001863 ( Main/Exploration ); précédent : 001862; suivant : 001864

Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes.

Auteurs : Ivanka Dilova [États-Unis] ; Sofia Aronova ; Jenny C-Y Chen ; Ted Powers

Source :

RBID : pubmed:15326168

Descripteurs français

English descriptors

Abstract

The heterodimeric bZip/HLH transcription factors Rtg1p and Rtg3p regulate the expression of a concise set of metabolic genes (termed RTG target genes) required for de novo biosynthesis of glutamate and glutamine. Several components have now been identified that control both the intracellular localization as well as activity of the Rtg1p.Rtg3p complex, yet the precise upstream regulatory signals involved remain unclear. For example, it has been proposed that Rtg1p.Rtg3p activity is repressed by glutamate, acting through the mitochondrial retrograde response pathway or, alternatively, by glutamine, acting through the Tor kinase pathway. Here we demonstrate that RTG target gene regulation is remarkably complex, with glutamate and glutamine as well as ammonia collaborating as potentially distinct signals to regulate RTG target gene expression. We show that both Tor and these nutrient-based signals converge on Mks1p, the immediate upstream inhibitor of Rtg1p.Rtg3p, and that a direct correlation exists between the degree of Mks1p phosphorylation and the extent of RTG target gene repression. Finally, we find that Tor- and glutamine-mediated RTG-target gene repression can be experimentally uncoupled, indicating that glutamine and Tor act, at least in part, independently to inhibit this pathway.

DOI: 10.1074/jbc.M409012200
PubMed: 15326168


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes.</title>
<author>
<name sortKey="Dilova, Ivanka" sort="Dilova, Ivanka" uniqKey="Dilova I" first="Ivanka" last="Dilova">Ivanka Dilova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Section of Molecular and Cellular Biology and Center for Genetics and Development, Division of Biological Sciences, University of California, Davis, California 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Molecular and Cellular Biology and Center for Genetics and Development, Division of Biological Sciences, University of California, Davis, California 95616</wicri:regionArea>
<wicri:noRegion>California 95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aronova, Sofia" sort="Aronova, Sofia" uniqKey="Aronova S" first="Sofia" last="Aronova">Sofia Aronova</name>
</author>
<author>
<name sortKey="Chen, Jenny C Y" sort="Chen, Jenny C Y" uniqKey="Chen J" first="Jenny C-Y" last="Chen">Jenny C-Y Chen</name>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15326168</idno>
<idno type="pmid">15326168</idno>
<idno type="doi">10.1074/jbc.M409012200</idno>
<idno type="wicri:Area/Main/Corpus">001884</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001884</idno>
<idno type="wicri:Area/Main/Curation">001884</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001884</idno>
<idno type="wicri:Area/Main/Exploration">001884</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes.</title>
<author>
<name sortKey="Dilova, Ivanka" sort="Dilova, Ivanka" uniqKey="Dilova I" first="Ivanka" last="Dilova">Ivanka Dilova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Section of Molecular and Cellular Biology and Center for Genetics and Development, Division of Biological Sciences, University of California, Davis, California 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Molecular and Cellular Biology and Center for Genetics and Development, Division of Biological Sciences, University of California, Davis, California 95616</wicri:regionArea>
<wicri:noRegion>California 95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aronova, Sofia" sort="Aronova, Sofia" uniqKey="Aronova S" first="Sofia" last="Aronova">Sofia Aronova</name>
</author>
<author>
<name sortKey="Chen, Jenny C Y" sort="Chen, Jenny C Y" uniqKey="Chen J" first="Jenny C-Y" last="Chen">Jenny C-Y Chen</name>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ammonia (pharmacology)</term>
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors (MeSH)</term>
<term>Blotting, Northern (MeSH)</term>
<term>Blotting, Western (MeSH)</term>
<term>DNA, Complementary (metabolism)</term>
<term>Dimerization (MeSH)</term>
<term>Dose-Response Relationship, Drug (MeSH)</term>
<term>Gene Deletion (MeSH)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Glutamic Acid (metabolism)</term>
<term>Glutamine (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Mitochondria (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Repressor Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (métabolisme)</term>
<term>Acide glutamique (métabolisme)</term>
<term>Ammoniac (pharmacologie)</term>
<term>Azote (métabolisme)</term>
<term>Dimérisation (MeSH)</term>
<term>Délétion de gène (MeSH)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines (MeSH)</term>
<term>Glutamine (métabolisme)</term>
<term>Génotype (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de répression (métabolisme)</term>
<term>Relation dose-effet des médicaments (MeSH)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Technique de Northern (MeSH)</term>
<term>Technique de Western (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Complementary</term>
<term>Glutamic Acid</term>
<term>Glutamine</term>
<term>Nitrogen</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Repressor Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Ammonia</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Acide glutamique</term>
<term>Azote</term>
<term>Facteurs de transcription</term>
<term>Glutamine</term>
<term>Mitochondries</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de répression</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Ammoniac</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Northern</term>
<term>Blotting, Western</term>
<term>Dimerization</term>
<term>Dose-Response Relationship, Drug</term>
<term>Gene Deletion</term>
<term>Gene Expression Regulation</term>
<term>Genotype</term>
<term>Humans</term>
<term>Microscopy, Fluorescence</term>
<term>Models, Biological</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Phosphorylation</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dimérisation</term>
<term>Délétion de gène</term>
<term>Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines</term>
<term>Génotype</term>
<term>Humains</term>
<term>Microscopie de fluorescence</term>
<term>Modèles biologiques</term>
<term>Phosphorylation</term>
<term>Relation dose-effet des médicaments</term>
<term>Régulation de l'expression des gènes</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Technique de Northern</term>
<term>Technique de Western</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The heterodimeric bZip/HLH transcription factors Rtg1p and Rtg3p regulate the expression of a concise set of metabolic genes (termed RTG target genes) required for de novo biosynthesis of glutamate and glutamine. Several components have now been identified that control both the intracellular localization as well as activity of the Rtg1p.Rtg3p complex, yet the precise upstream regulatory signals involved remain unclear. For example, it has been proposed that Rtg1p.Rtg3p activity is repressed by glutamate, acting through the mitochondrial retrograde response pathway or, alternatively, by glutamine, acting through the Tor kinase pathway. Here we demonstrate that RTG target gene regulation is remarkably complex, with glutamate and glutamine as well as ammonia collaborating as potentially distinct signals to regulate RTG target gene expression. We show that both Tor and these nutrient-based signals converge on Mks1p, the immediate upstream inhibitor of Rtg1p.Rtg3p, and that a direct correlation exists between the degree of Mks1p phosphorylation and the extent of RTG target gene repression. Finally, we find that Tor- and glutamine-mediated RTG-target gene repression can be experimentally uncoupled, indicating that glutamine and Tor act, at least in part, independently to inhibit this pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15326168</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>12</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>279</Volume>
<Issue>45</Issue>
<PubDate>
<Year>2004</Year>
<Month>Nov</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes.</ArticleTitle>
<Pagination>
<MedlinePgn>46527-35</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The heterodimeric bZip/HLH transcription factors Rtg1p and Rtg3p regulate the expression of a concise set of metabolic genes (termed RTG target genes) required for de novo biosynthesis of glutamate and glutamine. Several components have now been identified that control both the intracellular localization as well as activity of the Rtg1p.Rtg3p complex, yet the precise upstream regulatory signals involved remain unclear. For example, it has been proposed that Rtg1p.Rtg3p activity is repressed by glutamate, acting through the mitochondrial retrograde response pathway or, alternatively, by glutamine, acting through the Tor kinase pathway. Here we demonstrate that RTG target gene regulation is remarkably complex, with glutamate and glutamine as well as ammonia collaborating as potentially distinct signals to regulate RTG target gene expression. We show that both Tor and these nutrient-based signals converge on Mks1p, the immediate upstream inhibitor of Rtg1p.Rtg3p, and that a direct correlation exists between the degree of Mks1p phosphorylation and the extent of RTG target gene repression. Finally, we find that Tor- and glutamine-mediated RTG-target gene repression can be experimentally uncoupled, indicating that glutamine and Tor act, at least in part, independently to inhibit this pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dilova</LastName>
<ForeName>Ivanka</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Section of Molecular and Cellular Biology and Center for Genetics and Development, Division of Biological Sciences, University of California, Davis, California 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aronova</LastName>
<ForeName>Sofia</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jenny C-Y</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Powers</LastName>
<ForeName>Ted</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>08</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051778">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C080921">MKS1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C079378">RTG1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C104438">RTG3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0RH81L854J</RegistryNumber>
<NameOfSubstance UI="D005973">Glutamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3KX376GY7L</RegistryNumber>
<NameOfSubstance UI="D018698">Glutamic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7664-41-7</RegistryNumber>
<NameOfSubstance UI="D000641">Ammonia</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000641" MajorTopicYN="N">Ammonia</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051778" MajorTopicYN="N">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015152" MajorTopicYN="N">Blotting, Northern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004305" MajorTopicYN="N">Dose-Response Relationship, Drug</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="Y">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018698" MajorTopicYN="N">Glutamic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005973" MajorTopicYN="N">Glutamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15326168</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M409012200</ArticleId>
<ArticleId IdType="pii">M409012200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Aronova, Sofia" sort="Aronova, Sofia" uniqKey="Aronova S" first="Sofia" last="Aronova">Sofia Aronova</name>
<name sortKey="Chen, Jenny C Y" sort="Chen, Jenny C Y" uniqKey="Chen J" first="Jenny C-Y" last="Chen">Jenny C-Y Chen</name>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Dilova, Ivanka" sort="Dilova, Ivanka" uniqKey="Dilova I" first="Ivanka" last="Dilova">Ivanka Dilova</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001863 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001863 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15326168
   |texte=   Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15326168" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020